THE EUROPEAN PHYSICAL JOURNAL B EDP Sciences © Società Italiana di Fisica

© Società Italiana di Fisica Springer-Verlag 2000

Electronic structure of LiMnO₂: X-ray emission and photoelectron spectra and band structure calculations

V.R. Galakhov^{1,a}, M.A. Korotin¹, N.A. Ovechkina¹, E.Z. Kurmaev¹, V.S. Gorshkov², D.G. Kellerman², S. Bartkowski³, and M. Neumann³

¹ Institute of Metal Physics, Russian Academy of Sciences – Ural Division, 620219 Yekaterinburg GSP-170, Russia

² Institute of Solid State Chemistry, Russian Academy of Sciences – Ural Division, 620219 Yekaterinburg GSP-145, Russia

³ University of Osnabrück – Fachbereich Physik, 49069 Osnabrück, Germany

Received 15 March 1999 and Received in final form 14 July 1999

Abstract. The electronic structure of LiMnO_2 and Li_2MnO_3 was studied by means of X-ray photoelectron and soft X-ray emission spectroscopy. For LiMnO_2 , LSDA and LSDA+U calculations were carried out. The LSDA+U calculations are in rather good agreement with the measured valence-band structure as well as with the magnetic and electrical properties of LiMnO_2 . It is shown that the band gap in LiMnO_2 is determined by the *charge-transfer* effect.

PACS. 71.20.-b Electron density of states and band structure of crystalline solids – 78.70.En X-ray emission spectra and fluorescence – 79.60.-i Photoemission and photoelectron spectra

1 Introduction

Interest in the electronic structure of manganites was initiated by the discovery of colossal magnetoresistance effects in $R_{1-x}A_x$ MnO₃, where R and A are rare-earth and alkaline-earth ions, respectively [1,2]. The most important application of LiMnO₂ is the usage for Li-batteries.

Pure LaMnO₃ is an antiferromagnetic insulator and exhibits a strongly Jahn-Teller (JT) distorted orthorhombic structure with an additional rotation of the oxygen octahedra. The doped compounds are typically ferromagnetic metals below the Curie temperature and show semiconducting behavior above it.

The Mn ions in $LiMnO_2$ have a formal valence of 3+, as in $LaMnO_3$. In this respect $LiMnO_2$ and $LaMnO_3$ can be considered as related compounds.

LiMnO₂ belongs to the space group Pmmn (No 59) with the structural parameters $a = 2.8043 \pm 0.0006$ Å, $b = 4.5793 \pm 0.0012$ Å and $c = 5.7510 \pm 0.0011$ Å [3–5]. Its structure consists of three layers of MnO₂ separated by sheets of Li ions (see Fig. 1). Antiferromagnetic behavior was observed below $T_N = 300$ K with $\theta = -660$ K, and a Curie-Weiss moment of 4.91 $\mu_{\rm B}$, consistent with high-spin Mn³⁺ ions $(t_{2q}^3 e_q^1)$ [6].

The oxide Li_2MnO_3 has the space group C2/m with a = 4.937(1) Å, b = 8.532(1) Å, c = 5.030(2) Å and $\beta = 109.46(3)^{\circ}$ [7]. Below the Néel temperature of 36.5 K [7] it shows an antiferromagnetic behavior, and above the Néel temperature it is paramagnetic with a Curie-Weiss moment of 3.83 $\mu_{\rm B}$ [8]. The Mn⁴⁺ ions in Li₂MnO₃

Fig. 1. Fragment of the crystal structure of LiMnO₂.

should have a $3d^3$ electron configuration, as in CaMnO₃ or SrMnO₃, with 3 electrons in t_{2g} orbitals.

De Groot [9] studied X-ray Mn 2p and O 1s absorption spectra of LiMnO₂ and Li₂MnO₃. On the basis of the Mn 2p XAS measurements, de Groot [9] concluded, that in LaMnO₃ a high-spin ⁵E ground state is realized, whereas the ground state of LiMnO₂ is a mixture of the high-spin ⁵E and low-spin ³T₁ configurations. Recently, Singh [10] reported band structure calculations of LiMnO₂ using a local spin density approximation (LSDA).

Saitoh *et al.* [11,12] have analyzed Mn 2p XPS spectra of LaMnO₃ and SrMnO₃ on the basis of a configurationinteraction cluster model using the parameters of the d-d

^a e-mail: GALAKHOV@ifmlrs.uran.ru

Coulomb interaction $U_{\rm eff}$ equal to 6.8 and 7.1 eV for LaMnO₃ and SrMnO₃, respectively. The *ligand* $p \rightarrow transition metal d$ charge-transfer energies $\Delta_{\rm eff}$ were equal to 1.8 eV for LaMnO₃ and -0.2 eV for SrMnO₃. For both LaMnO₃ and SrMnO₃ $U_{\rm eff}$ is larger than $\Delta_{\rm eff}$, which means that these compounds should be *charge-transfer* insulators. On the other hand, Chainani, Mathew, and Sarma [13] obtained for LaMnO₃ $\Delta = 5.0$ eV and U = 4.0 eV, and suggested that LaMnO₃ shows *Mott-Hubbard* rather than *charge-transfer* behavior. Note, that band-structure calculations of LaMnO₃ show a small gap at the Fermi level due to a Jahn-Teller splitting of the e_g band [14–17]. So, LaMnO₃ should be classified as a *Bloch-Wilson* insulator.

Here we give new experimental results of LiMnO₂ in comparison with Li₂MnO₃ obtained by X-ray photoelectron (XPS) and X-ray emission (XES) spectroscopic studies. For LiMnO₂, band-structure calculations in the frame of the LSDA and LSDA+U approximations have been carried out. We show that the band gap in LiMnO₂ is determined by the *charge-transfer* effect and not by the *Jahn-Teller* effect.

2 Experimental

Polycrystalline samples of LiMnO₂ and Li₂MnO₃ were prepared by solid-state reaction. Sintered mixtures of appropriate molar quantities of Mn₂O₃ and Li₂CO₃ were annealed at 750 °C for 20 h in helium. The specimens were checked by X-ray phase analysis using a DRON-2 diffractometer with Cu $K\alpha$ radiation.

X-ray photoelectron spectra were measured on an ESCA spectrometer from Physical Electronics (PHI 5600 ci) using monochromatic Al $K\alpha$ radiation. The specimens were investigated after breaking in vacuum. The spectra were calibrated using an Au-foil $(E_{\rm B}(4f_{7/2})=84.0 \text{ eV})$. The energy resolution as determined at the Fermi level of the Au-foil was approximately 0.4 eV.

Mn $L\alpha$ ($3d4s \rightarrow 2p_{3/2}$ transitions), and O $K\alpha$ ($2p \rightarrow 1s$ transitions) X-ray emission spectra (XES) were measured on an RSM-500 X-ray spectrometer using electron excitation. The Mn L_{α} spectra were recorded in the second reflection order with an energy resolution of about 1 eV. The O $K\alpha$ spectra were measured in the first reflection order with a resolution of 1.3 eV. In order to calibrate the Mn $L\alpha$ and O $K\alpha$ emission spectra we used the $L\alpha$ spectra of pure Mn and V (E = 637.4 and 511.3 eV, respectively). The X-ray tube was operated at V=4 keV and i=0.3 mA. The X-ray emission spectra were brought to the scale of the binding energies with respect to the Fermi level using the binding energies of the relevant initial (core-level) states of the X-ray transitions as measured by the XPS technique.

3 Computational details

The calculations of the electronic structure of LiMnO_2 were made using the structural data from [3,4]. The po-

Table 1. Atomic positions and mt-radii in LiMnO₂.

site	atom	x	y	z	r(a.u.)
2a	Mn	0.25	0.25	0.6347	2.32
2a	Li	0.25	0.25	0.126	2.64
2b	O_1	0.25	0.75	0.144	1.83
2b	O_2	0.25	0.75	0.602	1.97
4e	es_1	0.25	0.00	0.397	1.64
4e	es_2	0.25	0.01	-0.136	1.44

sitions of atoms and empty spheres (es) added in the calculations, together with the radii of the muffin-tin (mt) spheres, are presented in Table 1. Each Mn atom is surrounded by a distorted oxygen octahedron in which both Mn–O distances and O–Mn–O angles are different. The distances between Mn and O in the octahedron are 1.89, 1.95 and 2.30 Å.

Taking into account the simplest antiferromagnetic arrangement of the spins of the nearest (along the "b" crystallographic direction) Mn atoms, the space group becomes a Pmm2 one. The number of atoms per unit cell remains the same. The band structure calculations were made both in the local spin-density (LSDA) and LSDA+U approximations in the frame of the tight-binding linear muffin-tin orbitals scheme in atomic sphere approximation (TB-LMTO-ASA [18]; modified version 47 of the Stuttgart codes).

4 Results and discussion

In Table 2, the core-level binding energies and the maxima of the X-ray emission spectra for LiMnO_2 and Li_2MnO_3 are presented. The O 1s binding energy for Li_2MnO_3 is not expected to be chemically shifted and the shift of about 0.8 eV relative to LiMnO_2 can be explained as a shift of the Fermi level in the band gap. It is seen, that for Li_2MnO_3 with Mn^{4+} ions, the Mn 2p binding energies are 1.5 eV higher than for LiMnO_2 which contains Mn^{3+} ions. The Mn 2p core-level shift for Li_2MnO_3 in comparison with LiMnO_2 cannot be explained only by the shift of the Fermi level and but also by a "chemical shift" of 0.7 eV.

Figure 2a shows Mn 2p spectra of MnO, LiMnO₂ and Li₂MnO₃. The analysis of the spectrum of MnO is presented elsewhere (see, for example [19]).

Mn 2p core-level spectra of LiMnO₂ and Li₂MnO₃, were not studied before. The spectra exhibit satellites at energies of about 663 eV for LiMnO₂ and of 667 eV for Li₂MnO₃. In order to explain the satellite structure, let us use the interpretation of the Mn 2p spectra of LaMnO₃ and SrMnO₃ which have also Mn³⁺ and Mn⁴⁺ ions and may be considered as analogs of LiMnO₂ and Li₂MnO₃, respectively. The distances between the main peaks and the satellites for LiMnO₂ and Li₂MnO₃ are the same as for LaMnO₃ and for SrMnO₃, respectively (see Ref. [20]). According to the estimation of the Mn 2p spectra for LaMnO₃ [11], the main peaks of the spectrum of LiMnO₂ should arise from pd^5L states whereas the satellites should

Table 2. Binding energies, values of the XPS Mn 3s splitting and energies of the maxima of the X-ray emission spectra (eV). All values are given with an accuracy of ± 0.1 eV.

Oxide	Mn $2p_{3/2}$	O $1s$	$\Delta E_{\mathrm{Mn}3s}$	M n $L\alpha$	O $K\alpha$	Mn $3d$ (XES)	O $2p$ (XES)
$LiMnO_2$	641.5	529.4	5.4	638.2	525.2	3.3	4.2
$\rm Li_2MnO_3$	643.0	530.2	4.5	638.8	525.9	4.2	4.3

Fig. 2. (a) Mn $2p_{3/2}$ and $2p_{1/2}$ X-ray photoelectron spectra of MnO, LiMnO₂ and Li₂MnO₃. Arrows mark positions of satellites. For MnO, both the satellites for Mn $2p_{3/2}$ and $2p_{1/2}$ lines are shown. (b) Mn 3s X-ray photoelectron spectra of MnO, LiMnO₂ and Li₂MnO₃. Spin states for each oxide are shown. Arrows mark positions of satellites for MnO and LiMnO₂.

originate from $\underline{p}d^4$ and $\underline{p}d^6\underline{L}^2$ states. The oxide Li₂MnO₃ is an analog of SrMnO₃ and, similar to SrMnO₃ [11], the main peak consists of mixed $\underline{p}d^4\underline{L}-\underline{p}d^5\underline{L}^2$ states, while the satellite structure should be primarily due to $\underline{p}d^5\underline{L}^2$ states. Here, \underline{L} denotes a ligand hole arising after the transfer of an electron from a 2p ligand level to a metal 3d level and \underline{p} is a metal 2p hole in the final state of the photoemission process. Note, that the satellite structure accompanying the Mn $2p_{3/2}$ peak overlaps somewhat the Mn $2p_{1/2}$ peak.

The 3s core-level spectra of the 3d transition metals are known to exhibit exchange splitting. The magnitude of the splitting is proportional to (2S + 1), where S is the local spin of the 3d electrons in the ground state. In addition to the exchange interaction between the 3d and 3s states, a *charge-transfer* process must be taken into account. For Cu-oxides, the *charge-transfer* effect dominates the *multiplet* effect in the 3s spectra [21]. As the number of d electrons decreases, the role of charge-transfer processes becomes less important and in Mn compounds the 3s splitting is determined mainly by exchange processes [22,23].

Figure 2b shows the Mn 3s X-ray photoelectron spectra of MnO, LiMnO₂, and Li₂MnO₃. All the spectra exhibit two sharp peaks which originate from the exchange interaction of the Mn 3s and Mn 3d electrons. The weak satellites, which have a charge-transfer character as in the case of the Mn 2p spectra are also present at the binding energy of about 94.5 eV for MnO and at 94 eV for LiMnO₂. The satellite is absent in the case of Li₂MnO₃. The satellite structure in the 3s spectra must be interpreted as for the 2p spectra. Note, that the distance "main line-satellite" for the 3s spectra is not the same as for the 2p spectra since the parameter U_{cd} (the core-hole d electron Coulomb attraction energy) in the case of the 3s spectra is about 1 eV less than the parameter for the 2p spectra [24].

The value of the Mn 3s splitting for LiMnO₂ is in between the values for compounds with Mn^{2+} and Mn^{4+} ions: MnO and Li₂MnO₃. The parameter of the exchange splitting is well correlated to the spin magnetic moment predicted for Mn³⁺. Our measurements of the Mn 3s exchange splitting of LiMnO₂ indicate, that the ground state configuration of LiMnO₂ is the high-spin $3d^4$ one. No contribution of the low-spin configuration is detectable.

The conventional LSDA calculations of the antiferromagnetic LiMnO₂ compound predict a metallic ground state with a low value of the density of states (DOS) at the Fermi level: 0.61 states/(Ry×cell) and a Mn *d*-magnetic moment equal to 3.45 $\mu_{\rm B}$. The total and partial DOS's are shown in Figure 3a. Two positions of oxygen atoms are presented: O(1) and O(2). The inclusion of electronelectron correlations into the calculations in the frame of the LSDA+U calculations [25] with the parameters U and J, equal to 3.5 and 0.8 eV, respectively, leads to an insulating ground state with an energy gap of 1.31 eV and a Mn 3d-magnetic moment of 3.67 $\mu_{\rm B}$. The corresponding DOS curves are also presented in Figure 3b.

Singh [10] carried out band-structure calculations for LiMnO_2 using the LSDA approximation and received band gaps of 35 meV and 0.6 eV for ferromagnetically and antiferromagnetically ordered LiMnO₂, respectively. According to his calculations, in antiferromagnetic LiMnO₂ the O 2p and Mn 3d states are separated from each other. The Mn 3d states are narrow and are weakly hybridized with the O 2p states.

Fig. 3. (a) Total and partial (in the local coordinate system) densities of states obtained in the LSDA calculations. (b) Total and partial (in the local coordinate system) densities of states obtained in the LSDA+U calculations.

This discrepancy between the results of our calculations and those made by Singh can be explained by the difference in the crystal structure of LiMnO₂ used in the calculations. Singh has used a monoclinic modification of LiMnO₂ (space group C2/m, No 12). This structure represents a monoclinic deformation of α -NaFeO₂ [26]. Our calculations were carried out for LiMnO₂ in the orthorhombic structure (space group Pmmn).

It is known, that the band gap in the oxide LaMnO₃ is caused by the *Jahn-Teller* effect, and without the Jahn-Teller distortion (*i.e.* for a cubic cell), LaMnO₃ would be a ferromagnetic metal rather than an antiferromagnetic insulator. The splitting of the e_g bands due to the Jahn-Teller distortion leads to a small gap of the order of 0.1 eV. The electronic structure of LaMnO₃ can

be rather well described by band-structure calculations, without taking into account electron-electron correlations [14–17]. For LiMnO₂, the value of the Jahn-Teller distortion is smaller than in LaMnO₃ and cannot split the e_g states and open the band gap. The dominant process of the formation of the band gap is the *charge-transfer* process.

Let us compare the band-structure calculations with the experimental X-ray photoelectron and emission spectra. Figure 4a shows the valence band X-ray photoelectron spectrum, the Mn $L\alpha$ and O $K\alpha$ X-ray emission spectra, and the partial densities of occupied (spin-up and spin down) states calculated in the LSDA+U approximation. The X-ray emission spectra are arranged with respect to the Fermi level, taking into account the Mn $2p_{3/2}$ and

Fig. 4. (a) X-ray photoelectron spectrum of the valence band and Mn $L\alpha$ and O $K\alpha$ X-ray emission spectra of LiMnO₂, compared with the partial densities of states calculated using the LSDA + U approximation. (b) X-ray photoelectron spectrum of the valence band and Mn $L\alpha$ and O $K\alpha$ X-ray emission spectra of Li₂MnO₃. X-ray emission spectra are brought to a common energy scale using the core-level binding energies.

O 1s core-level binding energies measured by means of X-ray photoelectron spectroscopy (see Tab. 2).

According to the cluster-model analysis of LaMnO₃, the XPS region from 0 to 10 eV (features "A–D") of LiMnO₂ corresponds to the Mn $3d^4\underline{L}$ final-state configuration, while the satellite "E" at about 13 eV has strongly mixed $d^3-d^5\underline{L}^2$ character [11].

For the Al $K\alpha$ excitation, the cross-section ratio $\sigma(O 2p): \sigma(Mn 3d)$ is equal to 0.17:1 [27] and as a consequence, the main contribution to the XPS valence-band spectrum in the presented energy region results from Mn 3d states. Therefore we compare the X-ray photoelectron and Mn $L\alpha$ spectra with the Mn 3d partial densities of states. The densities of states were shifted by hand until a good agreement with the experimental spectra was obtained. The general width and the shape of the photoelectron spectrum agree well with the calculated Mn 3ddensity of states. The maximum of the Mn $L\alpha$ emission spectrum coincides with the main peak "B" of the XPS valence-band spectrum at about 3 eV. The shoulder of the Mn $L\alpha$ spectrum at the energy of 5–10 eV is overlapping with the XPS peaks "C" and "D" at 5.5 and 7 eV, respectively.

According to the band-structure calculations, the shoulder "A" of the photoelectron spectrum near the Fermi level originates from e_g states. The feature of the Mn $L\alpha$ spectrum in the region from 0 to 2 eV is formed partly by a satellite which can be explained by multielectron processes and partly by the Mn 3d (e_g) states. Peak "B" and feature "C" represent t_{2g} states. Feature "D" exhibits the sum of the t_{2g} and e_g states. Mn 3d states are also presented in the O $K\alpha$ spectrum due to the strong hybridization between the Mn 3d and O 2pstates. Feature "a" of the O $K\alpha$ X-ray emission spectrum can be attributed to the e_g component of the Mn 3d states hybridized with the O 2p states. Feature "b" is mostly the O $2p\pi$ states bonded to the metal 3d states. Feature "c" is a result of the mixing of Mn $3d (e_g)$ states to the bonding O $2p\sigma$ states and of the Mn $3d(t_{2g})$ states to the O $2p\pi$ states.

In Figure 4b, the valence-band X-ray photoelectron spectrum and the Mn $L\alpha$ and O $K\alpha$ X-ray emission spectra of the oxide Li_2MnO_3 are shown. The photoelectron spectrum differs from the one of LiMnO₂. The feature "A" is absent, and the maximum of the Mn $L\alpha$ spectrum is shifted from the Fermi level by about 1 eV in comparison with $LiMnO_2$. The peak "B" is less intensive than for LiMnO₂, and the shoulders "C" and "D" are now a common sub-band "C/D". The changes in the XPS spectrum are reflected also in the Mn $L\alpha$ X-ray emission spectrum. The intensity relation of the main maximum ("B" feature in the XPS) to the one of the shoulders "C/D" is decreased. The Mn 3d electrons of Li₂MnO₃ should have occupied xy, yz or xz orbitals (corresponding to t_{2g} orbitals in the cubic description), and empty $x^2 - y^2$ and z^2 orbitals $(e_q \text{ orbitals in the cubic description}).$

In the cluster approximation, the features "B–D" should be presented, probably, as strongly mixed $d^3\underline{L} - d^4\underline{L}^2$ states, as in the case of SrMnO₃ [11]. The satellite "E" has, probably, mainly $d^4\underline{L}^2$ character [11].

The O $K\alpha$ spectrum shows the main maximum "b" and the shoulder "c" which represent antibonding and bonding O 2p states, respectively. The O 2p states of Li₂MnO₃ are less hybridized with the Mn 3*d* states in comparison with LiMnO₂, since the less localized Mn 3*d* (t_{2g}) states are bonded to the O $2p\pi$ states in Li₂MnO₃.

The difference in the valence-band spectra of LiMnO_2 and Li_2MnO_3 cannot be explained only by differences in the Mn 3d ion configurations. The difference in the atomic structure of these compounds should be taken into account. In LiMnO₂, MnO₆ octahedra share corners, and thus strong 180° Mn–O–Mn interactions are possible, giving rise to a large d bandwidth. In Li₂MnO₃, the MnO₆ octahedra share edges which leads to 90° Mn–O–Mn interaction and to a reduced d bandwidth.

5 Conclusion

In summary, we have presented X-ray photoelectron and soft X-ray Mn $L\alpha$ and O $K\alpha$ emission spectra of LiMnO₂ and Li₂MnO₃. Binding energies of the Mn 3*d* and O 2*p* states were determined. For LiMnO₂, *ab initio* LSDA and LSDA+U calculations were carried out and a strong O 2p-Mn 3d hybridization is established. It was shown that LSDA calculations are not able to describe the electronic properties of LiMnO₂ and predict a metallic state for it. The LSDA+U calculations showed that LiMnO₂ is a semiconductor with a band gap of 1.31 eV. In contrast to LaMnO₃, the band gap is determined not by the Jahn-Teller effect but by the charge-transfer effect.

Financial supports from the joint DFG/RFBR project "Electron Structure of Strongly Correlated Oxide Systems" and the NATO Project (Grant No. HTECH. LG971222) are gratefully acknowledged.

References

- R. von Helmot, J. Wecker, B. Holzapfel, L. Schultz, K. Samver, Phys. Rev. Lett. 71, 2331 (1993).
- S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, L.H. Chen, Science 264, 413 (1994).
- W.D. Johnston, R.R. Heikes, J. Am. Chem. Soc. 78, 3255 (1956).
- R. Hoppe, G. Brachtel, M. Jansen, Z. Anorg. Allg. Chem. 417, 1 (1975).
- D.G. Kellerman, V.S. Gorshkov, V.G. Zubkov, V.A. Perelyaev, V.R. Galakhov, E.Z. Kurmaev, S. Uhlenbrock, M. Neumann, Russian J. Inorg. Chem. 42, 914 (1997).
- P.F. Bongers, Ph.D. thesis, University of Leiden, Leiden, The Netherlands, 1957.
- P. Strobel, B. Lambert-Andron, J. Solid State Chem. 75, 90 (1988).
- M. Jansen, R. Hoppe, Z. Anorg. Allg. Chem. **397**, 279 (1973).
- F.M.F. de Groot, Ph.D. thesis, University of Nijmegen, Nijmegen, The Netherlands, 1991.
- 10. D.J. Singh, Phys. Rev. B 55, 309 (1997).
- T. Saitoh, A.E. Bocquet, T. Mizokawa, H. Namatame, A. Fujimori, M. Abbate, Y. Takeda, M. Takano, Phys. Rev.

B **51**, 13942 (1995).

- T. Saitoh, A.E. Bocquet, T. Mizokawa, A. Fujimori, Phys. Rev. B 52, 7934 (1995).
- A. Chainani, M. Mathew, D.D. Sarma, Phys. Rev. B 47, 15397 (1993).
- I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. B 53, 7158 (1996).
- 15. T. Misokawa, A. Fujimori, Phys. Rev. B 54, 5368 (1996).
- I. Solovyev, N. Hamada, K. Terakura, Phys. Rev. Lett. 76, 4825 (1996).
- E.Z. Kurmaev, V.M. Cherkashenko, M. Neumann, S. Stadler, D.L. Ederer, Ya.M. Mukovskii, I.V. Solovyev, N.A. Ovechkina, V.R. Galakhov, A. Fujimori, M.M. Grush, T.A. Callcott, R.C. Perera, J. Electr. Spectr. Relat. Phen. 96, 187 (1998).
- O.K. Andersen, Phys. Rev. B 12, 3060 (1975); O.K. Andersen, O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
- G.-H. Gweon, J.-G. Park, S.-J. Oh, Phys. Rev. B 48, 7825 (1993).
- E.Z. Kurmaev, M.A. Korotin, V.R. Galakhov, L.D. Finkelstein, E.I. Zabolotzky, N.N. Efremova, N.I. Lobachevskaya, S. Stadler, D.L. Ederer, T.A. Callcott, L. Zhou, A. Moewes, S. Bartkowski, M. Neumann, J. Matsuno, T. Misokawa, A. Fujimori, J. Mitchell, Phys. Rev. B 59, 12799 (1999).
- T. Mizokawa, A. Fujimori, H. Namatame, K. Akeyama, N. Kosugi, Phys. Rev. B 49, 7193 (1994).
- K. Okada, A. Kotani, Techn. Rep. ISSP, Ser. A, No. 2541 (1992);
 K. Okada, A. Kotani, J. Phys. Soc. Jpn **61**, 4619 (1992);
 K. Okada, A. Kotani, B. Thole, J. Electr. Spectrosc. Relat. Phen. **58**, 325 (1992).
- T. Uozumi, K. Okada, A. Kotani, R. Zimmermann, P. Steiner, S. Hüfner, Y. Tezuka, S. Shin, Techn. Rep. ISSP, Ser. A, No. 3144 (1996).
- T. Uozumi, K. Okada, A. Kotani, R. Zimmermann, P. Steiner, S. Hüfner, Y. Tezuka, S. Shin, J. Electron Spectr. Relat. Phen. 83, 9 (1997).
- V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Cond. Matter 9, 767 (1997).
- A.R. Armstrong, P.G. Bruce, Nature (London) **381**, 499 (1996).
- J.J. Yeh, I. Lindau, Atomic Data and Nuclear Data Tables 32, 1 (1985).